SUPPORTIVE

22UCU303: MATHEMATICAL FOUNDATIONS FOR DATA ANALYSIS
CREDITS:4
MARKS: $40+60$

SYLLABUS

Unit I

Linear Algebra

Vectors and Matrices - Addition and Multiplication - Bases - Linear independence and dependence of vectors - Orthogonal matrices - Rank of matrix - Finding Eigen values and eigen vectors of a matrix - Problems based on Rank - Nullity theorem.

Unit II Distances and Nearest Neighbors

Metrics - Lp Distances and their Relatives - Lp Distances - Mahalanobis Distance Cosine and Angular Distance - KL Divergence - Distances for Sets and Strings - Jaccard Distance - Modeling Text with Distances - Bag-of-Words Vectors - k-Grams

Unit III

Optimization for Data Science

Unconstrained Multivariate Optimization - Gradient Descent Learning Rule Multivariate optimization with equality constraint - Multi variate optimization with in equality constraint

Unit IV Cross validation

Cross validation - Multiple linear Regression modelling building and selection Classification - Performance measures

Unit V

Principal Component Analysis

Data Matrices - Projections - SSE Goal - Singular Value Decomposition - Best Rank-k Approximation Principal Component Analysis - Computation of PCA Components Reduction of Two dimension data set to one dimension - Drawing Graph for PCA

Text Book:

Text Book

1. MATHEMATICAL FOUNDATIONS FOR DATA ANALYSIS, JEFF M. PHILLIPS, 2018
https://www.cs.utah.edu/~jeffp/M4D/M4D-v0.4.pdf
Reference Books:
2. Introduction to Statistics and Data Analysis, Third Edition, Roxy Peck, Chris Olsen, Jay Devore,
https://www.spps.org/cms/lib/MN01910242/Centricity/Domain/859/Statistics\% 20Textbook.pdf
3. Introduction To Linear Algebra - Fifth Edition, By Gilbert Strang, 2016

E - Resources

https://youtu.be/MLaJbA82nzk

Unit I

1.1 Linear Algebra

1.1.1 Vectors and Matrices

For the context of data analysis, the critical part of linear algebra deals with vectors and matrices of real numbers

In this context, a vector $\mathrm{v}=\left(\mathrm{v}_{1}, \mathrm{v}_{2}, \ldots, \mathrm{v}_{\mathrm{d}}\right)$ is equivalent to a point in $\mathrm{R}{ }^{\mathrm{d}}$. By default a vector will be a column of d numbers (where d is context specific)

$$
\mathrm{v}=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
: \\
\cdot \\
v_{n}
\end{array}\right]
$$

but in some cases we will assume the vector is a row $\quad v^{T}=\left[\begin{array}{lllll}v_{1} & v_{2} & . & . & v_{n}\end{array}\right]$.
An $n \times d$ matrix A is then an ordered set of n row vectors $a_{1}, a_{2}, \ldots a_{n}$
$\mathrm{A}=\left[\begin{array}{llll}\mathrm{a}_{1} ; & \mathrm{a}_{2} ; \ldots & \ldots \mathrm{a}_{\mathrm{n}}\end{array}\right]=\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ \cdot \\ \vdots \\ a_{n}\end{array}\right]=\left[\begin{array}{ccccc}A_{1,1} & A_{1,2} & \ldots & . & A_{1, d} \\ A_{2,1} & A_{2,2} & \ldots & . & A_{2, d} \\ A_{n, 1} & A_{n, 2} & \ldots & . & A_{n, d}\end{array}\right]$ where the vector $a_{i}=$
$\left[\begin{array}{llll}A_{i, 1} & A_{i, 2} & . & .\end{array} A_{i, d}\right]$ and $A_{i, j}$ is the element of the ith row and jth column. We can We can write $A \in R^{n \times d}$ when it is defined on the reals.

1.1.2 Geometry of Vectors and numbers

Let A be an $n \times d$ matrix. Let $a_{1}, a_{2}, \ldots a_{n} \in R^{d}$. The vector is an arrow from the origin $\mathrm{O}=\{0,0,0 \ldots . . .0\}$ to that point.

This picture with $n=3$ points in $d=2$ dimensions is equivalent to the 3×2 matrix representation

$$
A=\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{cc}
-0.5 & 1.5 \\
2.5 & 0.75 \\
1 & 1
\end{array}\right] .
$$

1.1.3 Transpose of a Matrix.

Let $\mathrm{A}=\left[\mathrm{a}_{1} ; \mathrm{a}_{2} ; \ldots \mathrm{a}_{\mathrm{n}}\right]=\left[\begin{array}{c}a_{1} \\ a_{2} \\ a_{3} \\ \cdot \\ \vdots \\ a_{n}\end{array}\right]=\left[\begin{array}{ccccc}A_{1,1} & A_{1,2} & \ldots & . & A_{1, d} \\ A_{2,1} & A_{2,2} & . . & . & A_{2, d} \\ A_{n, 1} & A_{n, 2} & . . & . & A_{n, d}\end{array}\right]$ be a given matrix. Then A^{T} is
defined as $A^{T}=\left[\begin{array}{llllll}a_{1} & a_{2} & . & . & a_{n}\end{array}\right]=\left[\begin{array}{lllll}A_{1,1} & A_{2,1} & \ldots & . & A_{n, 1} \\ A_{1,2} & A_{2,2} & \ldots & . & A_{n, 2} \\ A_{1, d} & A_{2, d} & . & . & A_{n, d}\end{array}\right]$

1.1.4 Matrix - vector notation of Linear Equations

Consider the linear system of equations $3 x_{1}-7 x_{2}+2 x_{3}=-2,-1 x_{1}+2 x_{2}-5 x_{3}=$ 6. Here number of equations is $\mathrm{n}=2$ and dimension is the number of variables
$x_{1}, x_{2}, x_{3} \mathrm{~d}=3$. Matrix - vector notation of this system is $\mathrm{Ax}=\mathrm{b}$ where $b=\left[\begin{array}{c}-2 \\ 6\end{array}\right]$
$\mathrm{A}=\left[\begin{array}{ccc}3 & -7 & 2 \\ -1 & 2 & -5\end{array}\right] \quad \mathrm{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$.

